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Abstract 

Methods for population estimation and inference have evolved over the past 
decade to allow for the incorporation of spatial information when using capture-
recapture study designs. Traditional approaches to specifying spatial capture-
recapture (SCR) models often rely on an individual-based detection function that 
decays as a detection location is farther from an individual’s activity center. Tra-
ditional SCR models are intuitive because they incorporate mechanisms of animal 
space use based on their assumptions about activity centers. We modify the SCR 
model to accommodate a wide range of space use patterns, including for those 
individuals that may exhibit traditional elliptical utilization distributions. Our 
approach uses underlying Gaussian processes to characterize the space use of in-
dividuals. This allows us to account for multimodal and other complex space use 
patterns that may arise due to movement. We refer to this class of models as 
geostatistical capture-recapture (GCR) models. We adapt a recursive computing 
strategy to fit GCR models to data in stages, some of which can be parallelized. 
This technique facilitates implementation and leverages modern multicore and dis-
tributed computing environments. We demonstrate the application of GCR mod-
els by analyzing both simulated data and a data set involving capture histories of 
snowshoe hares in central Colorado, USA. 
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1 Introduction 

Bayesian models for spatial capture-recapture (SCR) data have become popular for es-

timating wildlife population demographics (Royle et al., 2013a). Conventional SCR 

models utilize data that comprise detections of a subset of individual animals from a 

wildlife population at an array of detectors (often referred to as “traps”). By account-

ing for spatial structure in the underlying movement process of the individuals, SCR 

models can be used to infer population abundance and density (in addition to other 

quantities in generalized SCR models; Tourani 2022). We present a new model for-

mulation that relaxes the conventional assumption of latent activity centers while still 

accounting for spatially structured species distributions and space use patterns. Our 

model links individual-level detection probability to latent continuous spatial random 

fields and thus we refer to it as a geostatistical capture-recapture (GCR) model. The 

GCR model is also amenable to multi-stage computing strategies that leverage parallel 

computing environments to accelerate and stabilize the implementation. 

In what follows, we present the conventional SCR model formulation to introduce 

our statistical notation and then highlight the components we modify in the subsequent 

methods section. We follow the parameter-expanded data augmentation (PX-DA) ap-

proach of Royle and Dorazio (2012) in the SCR framework (Royle and Dorazio, 2008; 

Royle and Young, 2008). For a set of traps that detect individuals at locations xl for 

l = 1, . . . , L during sampling periods (or occasions) j = 1, . . . , J , we observe binary 

detection/nondetection measurements for a set of n observed individuals yi,l,j where i 

denotes individual. It is often assumed that yi,l,j are independent conditioned on indi-P
vidual i and trap l. Thus, the count y J

i,l = j=1 yi,l,j represents the number of detections 

of individual i at trap l with conditional mixture binomial distribution ⎧⎪⎨ Binom(J, pi,l) , zi = 1 
yi,l ∼ , (1) ⎩ ⎪0 , zi = 0 

where zi is a latent population membership indicator for i = 1, . . . ,M , with M chosen 

so that it provides a realistic upper bound for population abundance (usually M >> n). 

In this type of PX-DA scenario, the data are augmented with all-zero capture histories 
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such that yi,l = 0 for all i > n and the latent indicators are modeled as zi ∼ Bern(ψ) 

(Royle, 2009). 

Most formulations of SCR models account for heterogeneity in detection probability 

pi,l by relating it to the distance between an unobserved individual activity center ci 

and the trap location xl such that 

 g(pi,l) = α + β · ||ci − xl||2 . (2) 

The term α accounts for baseline detection probability and β (often expressed as 1/2σ2) 

controls the rate of decay in detection probability as the distance between activity center 

and trap location increases. The functional form of (2) implies a radial space use pattern 

by all individuals, and this aspect of conventional SCR models has been debated (e.g., 

Ivan et al., 2013; Royle et al., 2013b; Fuller et al., 2016; Efford, 2019; Sutherland et al., 

2019). Furthermore, the link function g can be specified based on the study design or 

chosen based on convenience. For example, Royle and Dorazio (2008) described how the 

‘cloglog’ link function may accommodate data that arise as a censoring of counts based 

on multiple detections during a single time period. 

Our reformulation of the SCR model uses a geostatistical representation of the de-

tection function. The resulting GCR model is more robust to departures from individual 

elliptical space use patterns. For example, Wilson et al. (2010) found that bobcat (Lynx 

rufus) space use distributions could contain three distinct core areas of higher inten-

sity use. Similarly, Kordosky et al. (2021) observed some individual fishers (Pekania 

pennanti) with multiple core areas. Some bird species construct multiple nests during 

breeding season which may lead to complex space use patterns (Macqueen and Ruxton, 

2023). Our GCR model is flexible enough to accommodate these types of species and 

individuals with irregular space use distributions. 
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2 Methods 

2.1 Geostatistical Capture-Recapture (GCR) Model 

To generalize the SCR model, we retain the data model in (1) and develop a robust 

stochastic process model for the detection probabilities pi,l. A common criticism of 

conventional SCR models is that the link function in (2) implies a homogeneous radial 

space use distribution for each individual i that may not be realistic. Extensions that 

allow for heterogeneity in the pattern of activity centers ci using inhomogeneous point 

process models have been proposed (e.g., Royle et al., 2013b, 2018), but many studies 

assume the activity centers are independent and complete spatial random such that 

ci ∼ Unif(S) for all i (for compact study region S). 

Other approaches have generalized the detection function; for example, Fuller et al. 

(2016) incorporated least-cost distance to landscape features. Their approach was de-

signed for cases when environmental characteristics that affect movement are known 

(e.g., river corridors; Sutherland et al. 2015), but may not be helpful when barriers or 

movement corridors are unobserved. Royle et al. (2013b) developed a hybrid resource 

selection function (RSF) SCR model that allowed for heterogeneity in individual space 

use and in the broader species distribution. The hybrid RSF-SCR approach allows the 

individual locations to vary according to spatially referenced covariates and a general 

attraction to a single activity center. Similarly, a variety of new approaches to explicitly 

accommodate fine scale animal movement in SCR models (e.g., McClintock et al., 2022) 

have been proposed, but may require additional auxiliary data sources. 

Many of the aforementioned extensions to SCR models could be generalized to in-

corporate additional mechanisms associated with the processes of animal movement and 

space use (e.g., multiple activity centers, barriers and corridors to movement, etc.), but 

as the models become more complex they require more parameters and hence more data 

to learn those parameters effectively. To increase the set of options for modeling SCR 

data when they are limited and/or the mechanisms are less well known, we offer a flexible 

and parsimonious stochastic model for detection probability that accommodates spatial 

structure and irregularity in the species distribution and space use pattern together. 
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For a position x of individual i, we consider the detection function pi(x) (for 0 < 

pi < 1) as a smooth stochastic process in space. If the function pi(x) is proportional to 

the probability of an individual choosing to occur in that region of space then it could 

be referred to as a resource selection probability function (RSPF) (Lele, 2009; Hooten 

et al., 2020) and admits the notion of animal movement as an underlying mechanism 

that leads to detection in wildlife surveys (Hooten et al., 2017). 

We use a Gaussian process representation to construct a model for pi(x) such that it 

exists for any position x. First, without loss of generality, we consider a latent Gaussian 

process vi(x) with mean µ and covariance function between any two locations l and l̃, 

defined as � � 
(xl − x )̃0(xl − x )̃

cov(vi(xl), vi(xl̃)) = σ2Rl,l̃ = σ2 exp − l 

θ2 
l , (3) 

where this form can be generalized to accommodate any valid covariance function (e.g., 

the Matern class; Stein 2012). We connect the Gaussian process to the detection prob-

ability by g(pi(xl)) = vi(xl) for a valid link function g(·) (e.g., logit, probit, etc). By 

combining the SCR data model in (1) with a latent Gaussian process, we have a hierar-

chical zero-inflated binomial model with g(pi(xl)) = vi(xl). 

To complete the Bayesian model specification, only the spatial range (i.e., length-

scale) parameter θ, mean µ, and variance σ2 are unknown random variables in the model. 

We specify a normal prior for µ such that µ ∼ N(µ0, σ0
2), where µ0 = 0 can often be 

assumed. When a probit link is selected for g, we set σ2 = 1, but an inverse gamma prior 

for σ2 is conjugate if desired. A variety of options for prior distributions are available 

for θ, however, one particularly useful prior from a computational perspective is the dis-

crete uniform such that θ ∼ DiscUnif(Θ) on the finite discrete support set Θ (Diggle and 

Ribeiro Jr, 2002). By selecting a grid of values for Θ that span a range of realistic scales 

for the spatial structure in vi (and hence pi), we can precompute and store the matrix 

quantities that are necessary to implement the model. This can be done in advance of 

model fitting and in parallel. 
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2.2 Recursive Bayesian Implementation 

A traditional MCMC algorithm can be used to fit either the original SCR or our new 

GCR model, but such algorithms often suffer from poor mixing due to the need to tune 

the ci updates in the case of (2) or all pi,l updates in the case of our GCR model. Hooten 

et al. (2023) described an approach to fit CR models using multistage algorithms that 

leverage parallel computing resources. They also demonstrated that helpful adjustments 

to the model components arise when considering recursive implementations. We show 

that similar strategies can be applied to fit GCR models to SCR data. 

We seek a recursive Bayesian procedure that involves computational stages to fit 

the GCR model to data. This approach was inspired by the meta-analytic two-stage 

MCMC procedure described by Lunn et al. (2013) and generalized by Hooten et al. 

(2021) and McCaslin et al. (2021) where it was referred to as “prior-proposal recursive 

Bayesian” (PPRB) computation. In general, PPRB is a simple approach to obtain pos-

terior inference based on a procedure with parallelizable components, but Hooten et al. 

(2023) showed that it can be particularly useful for fitting CR models with heterogeneous 

detection probabilities. 

The full Bayesian GCR model we presented in Section 2.1 results in the posterior 

distribution ! !YM LY 
[V, z, ψ, µ, σ2, θ|Y] ∝ [yi,l|pi,l, zi] [zi|ψ][vi|µ, σ2, θ] [ψ][µ][σ2][θ] , (4) 

i=1 l=1 

for V ≡ (v1, . . . , vM ), where [vi|µ, σ2, θ] represents the latent Gaussian process that is 

linked to pi, and P ≡ (p1, . . . , pM ). We specify the prior for ψ as [ψ] = Beta(αψ, βψ) 

with hyperparameters αψ and βψ either set based on prior information or to approximate 

a scale prior (Link, 2013). A conventional implementation of this model using MCMC 

would require M ·L Metropolis-Hastings updates, each of which could potentially involve 

proposal distributions that require tuning due to the lack of conjugacy when updating 

pi,l. Thus, although the GCR model is more flexible than the classical SCR model, 

we would expect similar instability issues with the associated MCMC algorithm. Ap-

proaches based on integrated likelihoods can sometimes be helpful (e.g., Borchers and 

Efford, 2008; Efford et al., 2009; Efford, 2011; King et al., 2016) and numerical inte-
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gration approaches commonly used to fit SCR models are usually more stable, but also 

computationally intensive. 

To remedy the aforementioned issues, we fit the GCR model following the capture-

recapture recursive Bayesian implementation proposed by Hooten et al. (2023) which is 

comprised of two main stages. In the first stage, we condition on the observed individual 

capture histories yi for i = 1, . . . , n and marginalize over the latent process vi. In the 

second stage, we subsample from the first stage output using the conditional distribution 

for n. This procedure allows us to obtain a final MCMC sample from the posterior 

distribution associated with our GCR model: ! 
nY� � 

[µ, σ2, θ, ψ|y1, . . . , yn, n] ∝ yi|µ, σ2, θ, y 0 1 > 0 [n|µ, σ2, θ, ψ][µ][σ2][θ][ψ] , (5)i 
i=1 

with component distributions as described in what follows. We show how to derive (5) 

in Appendix A. 

For the first stage, we condition on the knowledge that the observed individuals were 

captured at least once which yields the integrated data model Z� � 0 0 0 yi|µ, σ2, θ, y 1 > 0 = [yi|pi, y 1 > 0][vi|µ, σ2, θ, y 1 > 0]dvi , (6)i i i 

where the conditional data model for yi given at least one detection is 

0 Pr(y0 1 > 0|yi, pi)[yi|pi]
[yi|pi, y 1 > 0] = P i , (7)i Pr(y01 > 0|y, pi)[y|pi]y 

1{y 1>0}[yi|pi]i = P 0 
, (8)

1{y01>0}[y|pi]y 

01{y 1>0}[yi|pi] 
= Qi 

L . (9) 
1 − l=1(1 − pi,l)J 

The denominator in (9) is equal to 1 − [y = 0|pi] for the binomial model [yi|pi] = QL [yi,l|pi,l], such that [yi,j |pi,l] ≡ Binom(J, pi,l).l=1 

The process model for vi conditioned on at least one detection for individual i is 

Pr(yi 
01 > 0|pi, µ, σ2, θ)[vi|µ, σ2, θ]

[vi|µ, σ2, θ, y 0 1 > 0] = R , (10)i Pr(y01 > 0|p, µ, σ2, θ)[v|µ, σ2, θ]dv 

(1 − 
Qi L (1 − pi,l)J )[vi|µ, σ2, θ] 

= R l=1 , (11) 
(1 − 

QL (1 − pl)J )[v|µ, σ2, θ]dvl=1 
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which together with the conditional data model implies the integrated data model in (6) 

can be expressed as R � � 1{y 1>0}[yi|pi][vi|µ, σ2, θ]dvi 
yi|µ, σ2, θ, y 01 > 0 = R i 

0 
. (12)i 

(1 − 
QL (1 − pl)J )[v|µ, σ2, θ]dvl=1 

Thus, in the first computing stage, we draw a sample for µ, σ2 , θ, and ψ, from the 

temporary posterior which is proportional to ! 
nY� � 
yi|µ, σ2, θ, y 01 > 0 [µ][σ2][θ][ψ] , (13)i 

i=1 

while noting that ψ does not appear in the integrated data model and thus a Monte 

Carlo (MC) sample can be drawn from its prior [ψ] directly. 

In the second computing stage, we sample from the full posterior distribution in (5) 

using the first stage temporary posterior as a proposal for µ, σ2 , θ, and ψ. This results 

in a block update for all parameters using the Metropolis-Hastings ratio 

[n|µ(∗), σ2(∗), θ(∗), ψ(∗)] 
, (14)

[n|µ(k−1), σ2(k−1), θ(k−1), ψ(k−1)] 

for MCMC iterations k = 1, . . . , K and where the (∗) indicates a random draw from the 

first stage sample with replacement. 

The conditional distribution for n in (5) and (14) is Z 
[n|µ, σ2, θ, ψ] = [n|P, ψ][V|µ, σ2, θ]dV , (15) 

where [V|µ, σ2, θ] = 
QM [vi|µ, σ2, θ] is a product of multivariate Gaussian densities.i=1 

The crux of this second computing stage lies in the evaluation of (15). We need to 

approximate the integral, either through numerical quadrature or MC integration by 

sampling from the multivariate Gaussian density. However, the conditional distribution 

in (15) can be computed in parallel and stored for recall as necessary in the first and 

second stage of the procedure. Also, Hooten et al. (2023) showed that [n|P, ψ] could be PM QLspecified as Poisson with intensity i=1 ψ(1 − l=1(1 − pi,l)J ). This Poisson model for 

n is much more computationally efficient to evaluate than the Poisson-binomial model 

that is implied in the original SCR model. The Poisson model specification for [n|P, ψ] 

also yields nearly identical results as M → ∞, thus we retain it in our implementation 

of the model that follows. 
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2.3 Inference and Prediction 

In terms of statistical inference, the GCR model allows us to quantify posterior char-

acteristics of the parameters µ, σ2 , θ, and ψ. However, most wildlife biologists are 

interested in inference associated with abundance N , the total number of individuals 

in the study population. Following Hooten et al. (2023), we sample the number of 

undetected individuals in our study population as N0
(k) ∼ Pois(ψ̄(k)(M − n)) and let 

N (k) = n + N0
(k) 
(for k = 1, . . . , K) as a posterior realization of abundance. The Poisson 

rate parameter can be computed as !Z QLψ(k) (1 − pl)J 

ψ̄(k) l=1= QL [v|µ(k), σ2(k), θ(k)]dv . (16) 
ψ(k) 

l=1(1 − pl)J + 1 − ψ(k) 

The parenthetical term in (16) is the full-conditional probability of membership for 

an undetected individual in our population. There are M − n potential undetected 

individuals, thus we have the Poisson intensity ψ̄(M − n). Posterior mean abundance 

can be computed using Monte Carlo integration as: E(N |Y) ≈ 
PK N (k)/K.k=1 

This procedure for inferring abundance can be interpreted similarly to the non-spatial 

CR setting. Our estimate of N represents the capturable individuals in our population 

under study; that is, the population susceptible to our trap array during the study. Our 

geostatistical model for detection probability accounts for individuals that may spend 

time outside the trap array, but unlike most other SCR models, it does not depend on 

latent activity centers explicitly (nor the associated assumptions about circular space 

use patterns). 

Royle and Dorazio (2008) presented an excellent review of approaches for estimating 

effective sample area and formulations of density (i.e., abundance per unit area). Similar 

approaches could be developed for the GCR model setting in cases where density, rather 

than abundance is of interest. We focus on space use patterns in what follows and the 

ability of the GCR to account for multimodel and asymmetric characteristics of space use 

that may arise in different ways. Thus, we estimate trap-specific detection probability pi,l 

for all individuals in the population and infer the individual-level space use patterns (i.e., 

the utilization distributions; Worton 1989) using the posterior predictive distribution of 

ṽi. We first obtain an MCMC sample of vi from its full-conditional distribution based on 
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the original joint distribution in (4), then sample ṽi from its predictive full-conditional 

distribution given vi by composition sampling with kriging (Appendix B). The full-

conditional distribution of vi is 

[vi|·] ∝ [yi|pi][vi|µ, σ2, θ] , (17) 

Q
where [y L 2

i|pi] = =1[yi,l|l  pi,l] is a product of binomial distributions and [vi|µ, σ , θ] is

multivariate normal. Then, given vi, the predictive full-conditional for ṽi is 

˜  
[ṽi|µ, ˜  v  ˜σ2, θ,   ˜  ˜ 0

i] = N(µ1 +ΣΣ−1(vi − µ1), Σ − ΣΣ−1Σ ) , (18)

where ˜ Σ is the cross-covariance matrix between the predictions and observed data and 

˜̃Σ is the covariance matrix associated with the predictions. 

To sample vi from (17), there are a variety of approaches including standard MCMC 

with conditional Metropolis-Hastings updates, elliptical slice sampling (Murray et al., 

2010), Hamiltonian Monte Carlo (Neal, 1992), and auxiliary variable approaches (Chib 

and Greenberg, 1998). We used this latter approach in practice (Albert and Chib, 1993) 

to obtain Markov chains for vi (via auxiliary variables) based on each parameter set 

µ (k), σ2(k), θ(k), for k = 1, . . . , K (Appendix B). Alternatively, this can be achieved with 

automated software (e.g., JAGS, NIMBLE, STAN; Plummer 2003, de Valpine et al. 

2017, Stan Development Team 2023) but may be slower and not result in well-mixed 

chains. 

To obtain inference for the individual-level utilization distributions we can use MC 

integration to compute PK (k) 0(k)
k=1 p̃i (s̃i)/p̃ i 1 , (19)

K 
(k)

where p̃ = Φ(ṽ(k)  (k)
i ) and p̃i (s̃i) is the kth posterior realization of detection probability 

at location s̃i. For a fine grid of locations, this results in a map of individual level 

posterior space use. However, the spatial pattern of (19) is the same as that of the 

posterior mean of p̃i for individual i. Thus, we present the latter in the applications 

that follow. 
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3 Applications 

3.1 Simulation 

We simulated capture-recapture data for a square trap array of L = 64 equally spaced 

detectors on the unit square (Figure 1). We used a multi-activity center SCR model to 

simulate the data. This simulation model was based on a superpopulation of M = 200 

individuals, with ψ = 0.2 membership probability which resulted in N = 29 individuals 

in our simulated population. We simulated the number of activity centers for each 

individual from a zero-truncated Poisson distribution with intensity parameter equal 

to 0.5 and locations of the latent activity centers were sampled as a complete spatial 

random point process in a square buffered region centered on the unit square study 

area S containing our trap locations xl for l = 1, . . . , L. The buffered region extended 

0.5 units beyond the trap array in each direction to allow the activity centers for some 

individuals to occur outside the trap array boundary S. We used a maximum of the 

complementary log-log (‘cloglog’) link for the detection function from (2) over all activity 

centers at each trap location with α = −1 and β = −50. These simulated data resulted 

in a mixture of unimodal and multimodal space use distributions for the N individuals, 

with n = 13 individuals observed (Figure 1). 

We fit the GCR model as described in the Methods section with priors specified 

as µ ∼ N(0, 4), ψ ∼ Beta(1, 1), and θ ∼ DiscUnif(Θ) with support on the set Θ ≡ 

{max(D)/20, . . . , max(D)/2} of equally spaced values of θ. The matrix D contains 
√ 

the pairwise distances among traps in our study area and max(D) = 2. We set the 

superpopulation size to M = 200 individuals for our study area and σ2 = 1. 

We used the multistage computing strategy to fit the GCR model with K = 100000 

MCMC iterations. Stage one required 61.4 minutes and stage two required 1.2 minutes. 

After fitting the model, post hoc sampling of the abundance N required 5.4 minutes 

and then we used a Gibbs sampler to obtain an MCMC sample for P for the simulated 

individuals 9 and 12. A Gibbs sampler required approximately 36 seconds for each indi-

vidual. All computation was performed on a machine with a 24-core 3.6 Ghz processor 

and 192 MB of RAM. 
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Figure 1: SCR data for n = 13 simulated individuals over an 8 × 8 array of L = 64 

traps spaced 0.143 units apart in a unit square study area. Positions of numbers 

represent trap locations in the array and values correspond to the number of detec-

tions for each individual at each trap (cases with yi,l > 0 shown in bold large font). 

Study area shown as a dashed box. 
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The GCR model fitted to the simulated data resulted in the marginal posterior 

distributions shown in Figure 2. Figure 2a shows a small estimated µ which implies that 
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Figure 2: Marginal posterior distributions for GCR parameters µ (panel a), θ (panel 

b), ψ (panel c), and N (panel d) resulting from our simulated data. Panel d shows 

both the observed number of individuals n (dotted vertical) and true number of 

individuals N (dashed vertical). 

the space use throughout most of the study area is low for a given individual. If the 

species occupied more of the study area, the parameter µ could increase to accommodate 

that type of space use. 

The marginal posterior mean for population abundance N was 28.5 (compared with 

the true simulated value N = 29; Figure 2d). The 95% marginal posterior credible 

interval for abundance N was (15, 55) and the marginal posterior quartiles were 21 and 

34. 

Figure 3 shows the posterior mean (and posterior standard deviation) for the implied 

space use distribution for two observed individuals in our simulated data; individual 9 

illustrates a bimodal space use pattern and individual 12 illustrates a unimodal space 

use pattern. For comparison, we also fit the traditional SCR model with detection 
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Figure 3: Posterior mean and standard deviation of p̃  for simulated individuals 9 

and 12 in our study area. Count of detections for each trap at xl for l = 1, . . . , 64 

shown as numbers. 
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function in (1) to the same simulated data (Appendix C), but with the buffer included 

in the state-space for the latent activity center point process. The results indicate a 

unimodal symmetric space use pattern between the two sets of detections for individual 

9 (Figure 7) rather than the bimodal space use pattern resulting from a fit of the GCR 

model. 

3.2 Snowshoe Hare 

We applied the GCR model to analyze a set of spatially-explicit capture histories of 

n = 13 snowshoe hares in Colorado, USA. The data contain counts of detections over 

J = 5 sampling occasions at L = 84 trap locations (Figure 4) and were collected 

during winter 2007 (Ivan et al., 2014). We defined the study area as the convex hull 

of the trap locations for this analysis. Exploratory analysis of these data suggest that 

certain individuals may not use space in a way that meets the assumptions of a standard 

SCR model because their detections occurred farther apart than those for most other 

individuals in the study; for example, individuals 1 and 5 in Figure 4. 

We fit the GCR model as described in the Methods section with priors specified 

as µ ∼ N(0, 4), ψ ∼ Beta(1, 1), and θ ∼ DiscUnif(Θ) with support on the set Θ ≡ 

{max(D)/20, . . . , max(D)/2} of equally spaced values, where D is the pairwise distance 

matrix among traps in our study area. We set the superpopulation size to M = 200 in-

dividuals for our study area and σ2 = 1 to ensure the other parameters were identifiable. 

We used K = 100000 MCMC iterations to fit the GCR model. This required 73.3 

minutes for stage one, and only 1.4 minutes for stage two of the recursive procedure. To 

sample the abundance N required 7.2 minutes and to sample from the full-conditional 

for v for an individual required approximately 54 seconds using a Gibbs sampler. All 

computation was performed on a machine with a 24-core 3.6 Ghz processor and 192 MB 

of RAM. 

The GCR model fitted to the snowshoe hare data resulted in marginal posterior 

distributions shown in Figure 5. Figure 5a indicates that a small µ and large θ were 

needed to result in adequate smoothness of the space use distribution throughout the 

study area. Furthermore, the marginal posterior 95% credible interval for abundance N 
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Figure 4: SCR data for n = 13 snowshoe hare individuals over a 7 × 12 array of 

L = 84 traps spaced 50m apart. Positions of numbers represent trap locations in 

array and values correspond to the number of detections for each individual at each 

trap (cases with yi,l > 0 shown in bold). Study area is shown as a dashed box. 
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Figure 5: Marginal posterior distributions for GCR parameters µ (panel a), θ (panel 

b), ψ (panel c), and N (panel d). Panel d shows the observed number of individuals 

n (dotted vertical). 

was (16, 88) and the marginal posterior quartiles were 24 and 43. 

For example, Figure 6 shows the posterior mean (and posterior standard deviation) 

for the implied space use distribution for two observed individuals in our study that have 

clearly bimodal space use patterns. These types of individual-level detection probability 

patterns (and hence space use patterns) (Figure 6, left column) would not be possible 

under the conventional SCR model. 

4 Discussion 

We presented a formulation of spatial capture-recapture models that allows for struc-

tured heterogeneity in detection probability over the study area. Our approach assumes 

the detection probability surface (and hence implied space use distribution) can be char-

acterized by a GP. We refer to this new CR model formulation as “geostatistical” to 

associate it with the previous studies that have used GPs for modeling other ecological 
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Figure 6: Posterior mean and standard deviation of p̃  for snowshoe hare individuals 

1 and 5 in our study area (Figure 4). Count of detections for each trap at xl for 

l = 1, . . . , 84 shown as numbers. 

and environmental processes. While there are a variety of approaches to fitting such 

models to data, we showed how to leverage multicore computing resources based on 

a multistage computing strategy. By extending the procedure described by (Hooten 

et al., 2023) to accommodate latent GPs, we showed that the GCR model was able to 

recover total abundance and detection probability patterns that are not unimodal using 

simulated data. 

We also fit the GCR model to capture-recapture data on snowshoe hares in Colorado, 

USA. Some of the capture histories associated with our observed snowshoe hares showed 

evidence of multimodality and asymmetric detection probability patterns. The posterior 

predictive space use distributions we obtained by fitting our GCR model confirmed this. 

Whereas conventional SCR models are specified based on an assumption about la-

tent point processes, our approach relies on the flexibility of latent continuous spatial 

processes. We appreciate the mechanism involved in the conventional SCR model spec-

ifications and our GCR model lacks that direct connection to an explicit activity center 

for each individual. However, we also see the need for additional flexibility in some cases 
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where the space use distributions may not adhere to single elliptical shapes. Further-

more, the latent GP is not without mechanistic connections. For example, in ongoing 

work, we are exploring the use of multi-output GPs (Alvarez et al., 2012) in GCR models 

that can account for dependence among individuals explicitly. For example, territorial 

species may use space that is unoccupied by conspecifics. Therefore we expect those 

individual space use distributions to be negatively correlated with each other. Our GCR 

model allows for both negative and positive interactions among individuals to be ac-

counted for using the same types of spatial statistical approaches that have been used 

to account for dependence among other multivariate spatial processes in nature (e.g., 

coregionalization and cokriging approaches; Journel and Huijbregts, 1978; Higdon, 2002). 

For those interested in multiscale ecological processes, a simpler extension of the GCR 

approach could facilitate separate inference for individual-based space use and species 

distribution by allowing for a shared spatially heterogeneous mean function in the latent 

GP across individuals. That mean function would then represent species distribution 

due to environmental factors that relate to the fundamental niche. Then the individual-

specific spatial random field could account for resource selection and movement at the 

finer scale. 

In fact, a rapidly growing area of development in SCR modeling involves the use of 

telemetry data (Hooten et al., 2017) coupled with CR data to account for individual-

level movement patterns in abundance estimation (e.g., McClintock et al., 2022). Our 

GCR model could be paired with a telemetry data model in a similar way when both 

sources of data exist. 
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Appendix A 

To show how the form of model that involves conditioning on observed sample size n in 

(5) arises, we demonstrate with a simple capture-recapture (CR) model for brevity in 

what follows. Extensions to the case where detection probability varies are described in 

Hooten et al. (2023). 

Suppose we have a CR model with yi modeled as in (1) but with homogeneous 

detection probability p and population membership indicator zi ∼ Bern(ψ) for i = 

1, . . . ,M . In this case, using PX-DA, yi = 0 for undetected individuals i = n+1, . . . ,M . 

This results in two sets of data: The original observed data y1:n ≡ (y1, . . . , yn)0 and the 

augmented zero data y(n+1):M ≡ (yn+1, . . . , yM )
0 . If we marginalize over zi to yield the 

“integrated” data model [yi|p, ψ], then we can write the posterior distribution of interest 

as 

[p, ψ|y1:n, y(n+1):M , n] = [y(n+1):M |p, ψ, y1:n, n][p, ψ|y1:n, n] , (20) 

where we condition on n as an auxiliary source of data because it is unknown until 

observed as part of the CR survey, like y1:n. The first term on the right-hand side in 

the above expression is irrelevant because the elements of y(n+1):M are always known to 

equal zero when n is observed. Thus, the second term in the above expression can be 

factored as ! 
nY 

[p, ψ|y1:n, n] ∝ [yi|p, yi > 0] [n|p, ψ][p][ψ] , (21) 
i=1 

where the conditional distribution [yi|p, yi > 0] is a zero-truncated binomial and the 

conditional distribution [n|p, ψ] is either Poisson-binomial or Poisson depending on model 

assumptions because n is the sum of binary variables indicating which individuals in 

the superpopulation were detected. In our GCR model, the detection probability is 

heterogeneous and stochastic, thus the conditional distribution for n is obtained by 

marginalizing over p. 

In terms of implementation of this simple model, for the first stage, we can use an 

MCMC algorithm with Metropolis-Hastings updates based on a proposal for p from its 

prior (or a random walk). The membership probability ψ can be Monte Carlo sampled 

directly from its prior because it does not appear in the first-stage conditional data 
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model. In the GCR model, we only have two parameters µ and θ. We used a Gaussian 

random-walk proposal for µ and a discrete random-walk proposal for θ and then a block 

update for both parameters simultaneously. 

Appendix B 

To sample vi (and hence pi) from its full-conditional distribution after implementing 

computing stages 1 and 2, we used a Gibbs sampler following a reparameterization of 

the distribution to include auxiliary variables (Albert and Chib, 1993). This approach 

was stable and fast relative to sampling using automated software. 

As a brief summary of the approach, to sample from the full-conditional distribu-

tion of vi, we recognize that we simply need to use MCMC to fit the model yi,l ∼ 

Binom(J, pi,l) where vi = Φ−1(pi) ∼ N(µ1, R(θ)) assuming that µ and θ are known 

(from the stage 2 MCMC output). It is not necessary to sample vi to fit the broader 

GCR model because it has been marginalized out in stages 1 and 2, but if we desire 

inference about the detection probability surface for certain individuals (e.g., Figures 3 

and 6), we can obtain a sample for vi post hoc. We can do this by fitting the model 

described above while conditioning on each realization of µ(k) and θ(k) from the stage 2 
(k)

output and retain a single realization of vi (e.g., the last realization in a short chain 

after burn-in) for each k = 1, . . . , K. 

For a specific individual i and conditional on µ and θ, we need only fit a Bayesian 

binomial generalized linear model (GLM) with probit link function Φ−1(pi) = µ1 + ηi 

with prior ηi ∼ N(0, R(θ)). Thus, the random vector ηi can be treated as a set of 

parameters in this reduced model. Alternatively, we can write ηi = Hαi where αi ∼ 

N(0, Λ) and H is a matrix of spatial basis functions (e.g., we used eigenvectors resulting 

from the spectral decomposition R(θ) = HΛH0 and Λ is a diagonal matrix of associated 

eigenvalues). This latter linear model formulation is not strictly necessary but could be 

used to reduce dimensionality to improve computation time by truncating the matrix H 

and associated dimension of the spectral coefficients αi. Based on the probit link function 

and multivariate normal prior for αi, we can write the model for a given individual of 
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interest i as: ⎧⎪⎨ 0, zi,l,j ≤ 0 
yi,l,j = , (22) ⎩ ⎪1, zi,l,j > 0 

where zi,l,j ∼ N(µ + h0 lαi, 1) with prior αi ∼ N(0, Λ) for j = 1, . . . , J sampling occasions 

and h0 l is the lth row vector of H. Jointly for an individual of interest i, we can write 

the model for the L × 1 latent random vector zi,j as 

zi,j ∼ N(µ1 + Hαi, I) . (23) 

This results in the following tractable full-conditional distributions ⎧⎪⎨ TN(µ + h0α , 1)0 
i = 0

[zi,l,j |·] = 
l −∞ , yi,j,l 

, (24) ⎪⎩ TN(µ + h0 lαi, 1)∞ 
0 , yi,j,l = 1 

[α −
i|·] = N((JH0H+Λ) 1(1 ⊗ H)0(zi − µ1), (JH0H+Λ)−1) , (25) 

where zi = (zi,1,1, zi,2,1, . . . , zi,l,j , . . . , zi,L−1,J , z
0

i,L,J )
 . These full-conditional distributions 

can be sampled from sequentially in our secondary MCMC algorithm and we obtain the 
(k) (k)

realization vi = µ1 + Hαi as a derived quantity. To predict ṽi at a grid of non-

trap locations throughout the study area, we sample from its predictive full-conditional 

distribution (18) as described in the Inference and Prediction section, then transform 

to p̃(k) i and use Monte Carlo integration to obtain posterior moments (i.e., the maps in 

Figures 3 and 6). 

Appendix C 

To compare inferred space use patterns, we fit the traditional SCR model from (1) to 

the simulated data shown in Figure 1 using JAGS. We used the spatial domain from 

the simulation (extended 0.5 units beyond the trap array to account for activity center 

that may fall outside the trap array) and specified vague Gaussian priors for the SCR 

parameters α and β, and a uniform prior for ψ. We also used the same superpopulation 

size M = 200. 
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The GCR model is able to account for irregular detection probability patterns in 

space, but the SCR model is not. The results of fitting the classical SCR model to 

our data can be compared with those from the GCR model in terms of the detection 

probability p̃  for a grid of prediction locations. 
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Figure 7: Posterior mean and standard deviation of p̃  from the traditional SCR model 

for simulated individuals 9 and 12 in our study area. Count of detections for each 

trap at xl for l = 1, . . . , 64 shown as numbers. The sampled region is buffered to 

allow for individuals with activity centers outside the trap array. 

We note that the predicted detection probability function places the center of prob-

ability mass between the two clusters of detections for individual 9 (Figure 7). The 

radial shape evident in the individual space use patterns is a characteristic of the SCR 

model and allows it to be powerful when the underlying detection probability meets the 
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assumptions (e.g., for individual 12), but as in this case with simulated individual 9, it 

may not appropriately represent more complicated patterns (as compared with the GCR 

results presented in Figure 3). From a model checking perspective (e.g., Conn et al., 

2018), we could omit the classical SCR model from our set of candidate models based 

on these results. 
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